
. mvmam "■ ^ -r^fw^mt ^'-■J-r.,wiw^.^.mf. ^W•W,l,-■,.ll!■

AD-785 171

TOTAL COMPLEXITY AND THE
INFERENCE OF BEST PROGRAMS

J. A. Feldman, et al

Stanford University

Prepared for:

Advanced Research Projects Agency
National Science Foundation

April 1972

DiSfRIBUTED BY:

mn
Technical Informition Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMOAIM-159

STAN-CS-253-72 ^h\

f*i (
^ (TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS

00
BY

J. A. FELDMAN
P. C. SHIELDS

SUPPORTED BY

NATIONAL SCIENCE FOUNDATION

AND

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 459

APRIL 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

m

D D C

SEP 1& 1S74

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce

Springfield VA 2?151

Approved for pMe MI^H

.Du*rtb"tion Uniü«tod

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-159

COMPUTER SCIENCE DEPARTMENT
REPORT CS-253

APRIL 1972

TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS

by

J. A. Feldman and P. C. Shields

ABSTRACT: Axioms for a total complexity measure for abstract programs
are presented. Essentially, they require that total complexity
be an unbounded increasing function of the Blum time and size
measures. Algorithms for finding the best program on a finite
domain are presented, and their limiting behaviour for
infinite domains described. For total complexity, there are
important senses in which a machine can find the best program
for a large class of functions.

This research was supported in part by the National Science Foundation
and the Advanced Research Projects Agency.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Advanced Research Projects
Agency or the National Science Foundation.

Reproduced in the USA. Available from the National Technical Informa-
tion Service, Springfield, Virginia 22151. - "rtm F€

//

We axe primarily concerned, in this paper, with the question of

when a machine can learn a program from samples of its input-output

pairs. This problem of program inference is closely related to the

problem of grammatical inference, which has received a fair amount of

consideration [2]. There are, in the grammatical inference literature,

many results and discussions which can be carried over to program

inference. This paper arose out of an attempt to carry out what we

believed to be a trivial reworking of some of the results of [7]

for programs. In fact, the results on programs turn out to be significant-

ly different; we will discus.« this issu? further below.

We are interested in modelling the following situation. A

machine M receives at each time t , an input-output pair (x,y)

from an unknown program P in a known class (3 of programs. At

each time, the machine is to guess some P.63 as the best prc^ram

for the finite number of input-output pairs seen so far. v\. show that

there are reasonable conditions under which M can guess the best

program at each finite time and also have good behaviour in the limit.

To do this, we need a formal notion of "best" program.

The key to our development is the combined complexity measure

including both program size and running time. Many of the difficulties

arising in other axiomatic treatments of complexity are elided in the

combined complexity approach.

More formally, our lesults will be formulated for programs. A

program can be taken to be any formal computational scheme for

evaluating a recursive function , such as a Turing machine descrip-

tion. To simplify the discussion it is assumed that the input and

output of a program are both positive integers. The graph J'(P)

of a program P is the set of all pairs (x,y) such that P is

defined for x and the output of P given the input x is y .

A sample S of a program P is a finite nonempty subset of Jf(P) -

The class C denotes a class of programr which can be effectively

enumerated by an admissible [17] enumeration, such as the class of all

Turing machines, the class of FORTRAN programs, or the class of loop

programs [19]. An inference machine M = M, is any formal effective

procedure for inferring programs from finite samples, that is, M

is defined on the set of samples {S} of programs in C and M(S)

is a program in fl . We will always require that S is a sample of

M(s) , that is

(1) ^(M(S))3S

Various complexity measures have been discussed, in particular

program running time and program size (see [12] for a discussion of

recent results). We wish to discuss measures of program complexity

which take into account both the size and running time of programs.

The simplest such measure is the product of size and running time.

Other measures are also useful. In order to obtain general results

we shall describe a complexity measure as any function satisfying a

simple set of axioms. The axioms for size and running time are the

same as those discussed in [12]> while the axioms for a combined

complexity measure are equivalent to those in [7] •

First we assume that the program size or length L = L

satisfies the conditions

(2) There is an effective admissible enumeration {P) such

such that

(a) r(n) - L(Pn) is a recursive positive integer valued

total function

(b) For each n , the set Kn - H r(m) . „) is finite

(c) The function ?(n) - cardinality of Kn is a recursive

function.

m running ti.e T(x,y,P) is a positive effect:Lvely ^^

rational action and is defined if and only if (x,y) is in the

graph of P . aere is a r!lated recursive fujnction

d(x,y,P,m) (0 ^ T(x,y,P) <m/

1 otherwise I

We also assume that the co.bined running ti^e T(s,P) is of the for.

W TCS,P)=V(U {T(x,y,P)))
(x,y)€S

where cp is a recursive function. The related function

DCs^m) = \o if T(S,P) <^

/1 otherwise

is then recursive.

Let c ba . positive recursive rational valued function of two non-

ne8ative rational tables „bich is increasing and unbounded in eaob

variable. Ihe coaplexity measure 0 = q, is then given by

C(S,P) - c(L(P),T(S,P)) , Sc*(P)

SMi« The size L(P) might be the number of symbols used to write

the program in some alphabet or the number of symtols on the tape of

a universal Turing machine needed to describe a adulation of the

program. Some plausible L(P) are excluded because of the require-

ment that there be only a finite number of programs of each size.

For example, the number of statements in a FORTRAN program or the

nesting depth of loop programs would not, as normally defined,

satisfy (2b). size measures which take structure into account are

discussed in [2, 6] for grammars.

For a given pair (x,y) the running time T(x,y,P) could be

the time the program P uses to derive output y from input x

(possibly also including the time for reading x and printing y).

Other possibilities are the numoer of moves or number of tape cells

scanned by a Turing machine, the number of instructions executed by

the program. One can also normalize by some function of x and y ,

for example, T(x,y,P) Could be actual running time divided by

xy .

The general function T(s,P) can be obtained from T(x,y,P)

in many ways, for example we could take T(s,P) as

roax T(x,y,P) , or S T(x,y,P)
(x.y)€S (x,y)€S

or as an average of T(x,y,P) , (x,y)€S .

The possibilities for the function c(L,T) are very large, for

example each of the following satisfy the hypotheses for c :

(L+1)(T+1) , L+T , (L+1)(T+1)

Notice that the simple product LT doesn't satisfy the hypotheses for

it is not unbounded in L when T=0 . We impose this requirement so

as to simplify some later arguments. The very general nature of the

function c precludes the possibility that all complexity measures are

.-.■--. ,.~-.^-,:-:-r^^ ■_.,,,., m

recursively related, a result wh^.ch is true boch for the length

L(P) and tljne T(x,y,P) . (See [12])

Remark 1

Although the results below are quite general, some care must be

used in applying them to actual inference situations. A major considera-

tion is to choose measures which do not degenerate into strictly time

or strictly size in the limit. For exanrple, S T(x,y,P)

(x,y)€S

may be unbounded is S gets large or the average of (time/length)

may go to zero with large S . Depending on the choice of

c(L(P), T(S,P)) either situation could lead to degeneracy. One

must also choose complexity functions which reflect the intuitive

meaning of the problem.

Our later proofs make use of the fact that the programs can be

ordered in terms of increasing size. An Occam's enumeration of Q>

relative to 1^ is an admissible enumeration ff) satisfying

W Ufy <L(F.) if i < j . •

It is obviou. from (2)(b), (c) that a machine can find an Occam's

enumeration relative to L . One consequence of this is the following

simple result:

Lemmas Given a complexity measure C = c(L,T) on the infinite class

any a and an Occam's enumeration of Q, relative to L then for

sample S of some P € e , there is an index k such that if

J > k then either

5

(5)(a) CCS,?,,) >C(S,P)

or

rd-

(b) S is not a sample of P. .

P£oof This is a consequence of the assumption that c is increasing

and unbounded in each variable. We merely choose k as the first

index for which

c(L(Pk), 0) >CCS,P)

If J > k and S is a sample of P then (k) guarantees that

L(P..) >L(Pk)

and hence

0(3^) = cCKPj), TiS^)

> catPj), o) >c(s,p)

This proves the lemma.

Now we prove the following general theorem.

Theorem 1 Given a complexity measure C(S,P) on a class £ there

is an inference machine M - % which infers programs of minimum

complexity, that is, if S is a sample of some program in (j ,

then S is a sample of M(s) and for all P63 for which S is a

sample of (p)

(6) C(S,M(S)) <C(S,P)

Proof The intuitive idea for the proof is as follows: Run P , P, ... P
1 I. t

on S for time t , successively incrementing t until some P. , i < t

runs successfully in time t . Then one need look v.t no programs

whose total complexity exceeds C(Pi,S) , hence one need examine orüy

a finite set of programs (cf. Lemma l) and pick the beM one.

To formally construct M we first assume an Occam's enumeration

for 0, relative to length L . Then

steP 1 Calculate D(S,Pi,t) , 1 < i < t . If D(S,Pi,t)=l for

1 < i < t , increment t by 1 and repeat Step 1. Otherwise let

t0 be the first t for which D(S,Pi,t)=0 for some 1 < i < t

and let i0 be the first i , 1 < i < t0 for which D(S,Pi,t0)=0

and proceed to Step 2.

Ste2_2 Use Lemma 1 to calculate k so that if j > k and S is a

sample of P. then

C(S,P) >C(S,P,)
J :Lo

steP 3 Conipute the first integer m > t such that

C(S,P) < c(0,m)
0

StgEj. I.at G(S) denote the set of those j, 1 < J < k for

DCs.P^m)^

which

Step 5 Compute ${&,?,) , J 6 G(S)

Ste£_6 Let 4^ be the first i € G(s) such that

C(S,Pi) =min fO(i,?J | j € G(S)}

and put M(S) = P.
h

Let us show that M(s) has the desired properties. M need

choose no program with complexity greater than C(S,P.) . Step 2
1o

rules out programs which are too long while Step 3 rules out programs

which take too long to run on S , hence if j ^ G(S) then either

S is not a sample of P or C(S,P) > C(S,P.) so (6) holds for

M(S) . This proves the Theorem.

The machine M constructed in the proof of Theorem 1 will in

certain cases have reasonable convergence properties as the sample

size increases. An information sequence j(P) is a sequence whose

range is ir(p) . An initial segment S is the sample

Sn = OKP). I 1 < i < n)

Given an information sequence J(p) , PRJ- , the machine M will

eventually be correct on any input for which P is defined, that is

(7) If (x,y)€*(?), then there is an N such that (xfy)i|f(M(i))

for n > N .

This follows easily from the fact that Sc^ (M(s)) and that (x,y)6S

for large enough n .

It may not be possible to obtain #(P) c ir(M(S)) for n

large. If f is a recursive total function then it may happen that

any program for f has such rapidly growing running time that M(S)

will be merely a table for Sn . In other words, if the running times

8

n

for programs for f are all unbounded then size becomes irrelevant

in the complexity measure. If the running time is bounded then the

machine of Theorem 1 will eventually pick only programs which agree

with f wherever f is defined.

Theorem 2 Suppose J(I>) is an information sequence for some program

P63 and that C(Sn,P) is bounded as i»» . Then for the machine

M of Theorem 1, we will have

i'(M(Sn)) 3 Jr(P) for n large enough.

Proof Let i0 denote the first index i for which ir(p. ^^(p)

and C(Sn, Pi) is bounded as IH» . Pit b = lub C(S , P.) and

choose K so that

C(L(PK),0) > b

The programs Pk for k > K will never be M(Sn) for their complexity

must be larger than that of P on S . Furthermore if k < K
i0 n

and i.(Pk) ^i<(P) , we can choose a. so that S will not be a

sample of i,(Pk) . Thus if n is large enough, M(S) must be one

of the programs P. for which i < K and ^(P.) ^(P) , This proves

the theorem.

Notice that if P is total, M(s) will eventually be only P

such that #(|^) =ir(p) . This behaviour is called matching in the

literature on grammatical inference f 7].

Corollary Suppose that for all information sequences .$(?) of a

given P g C , the limit

Y(P) = lim C(S ,P) Y\ / n
v n'

exists for all P such that #(?) ^^(P) . Let y be the minimum of

these Y(P) • Then for n svifficiently large, yiU{t&) =r •

Proof As the proof of Theorem 2 indicates, there is a K such that

for all n , M(S) is one of the programs f«t !> < i < k i and for

n large enough

l(M(Sn))3^(P)

Suppose i < K and ir^) Di'(P) , yC^) = Y • If J < K ,

ir(P.)3^(P) and Y(P-) >Y then for n large enough

0'iai Pj) > (YCPJ) +Y)/2

so M(S) will not be P. . This proves the Corollary.
n j

Theorem 2 can be applied in any case where the program has

bounded running times. A slight modification enables one to use this

result in the case when a bounding function for the running time is

known. To simplify our discussion w? shall assume that

(8) T(S,P) = max T(x,y,P) .
(x,y)€S

We could extend our results (Theorem 3) to more general cp , but the

extensions do not seem to warrant the additional complexity of proof.

We continue to search the right generalization of Theorem 3. A

recursive total function b of two variables, which is increasing

in both is called a bounding function. The running time of P € C

10

.

is bounded by b if there is an * > 0 such that

T(x,y, P) <a.b(x,y) , (x,y) € ^(p)

We will call the least such t the bounding constant of P . A

bounding function gives rise to a new running ti*e Tb defined for

(x,y) € M) by

Tb(x,y, P) = T(x,y, P)/b(x,y)

aad for ö c Jr(p) by

Tb(S,P) = max T (x,y, P)
(x,y)6S "

This in turn gives rise to the complexity measure C, defined by

Cb(S,P) = c(L(P), Tb(S,P))

aus if samples S are drawn from a program P which is known

to have its times bounded by a bounding function b , then one can

choose programs M^S) of minimal C, complexity and w that

J'(Mb(s))D^(P)

if the sample S is large enough.

iHUt aero arc a number of classes of computations with known

bounding functions in terms of various types of programs or machines

[13]. The complexity measure Cb will be more sensitive if the

bounding function chosen is a tight one Thn«, l# «. h ox^iio one. inus, if we know a computa-

tlon has polynomial bounds we should try to find the partloular

polynomial rather than Just choose some h that gro„s faster than any

polynomial. A hounding action that is too large may give rise to

degenerate measures, of Remark 1.

11

It »y even be posslble to infer a Soc. bo^ng function as

Part of m, general procedure for progra. inference, „ere „e describe

one «tbod for doing this. Suppose (b][) is a s^uence of bounding

actions satiating ^ . J . Vx>y) £ ^^ ^

«a wiU no. show ho« to infer both a bounding function and then good

Programs which run on the ssMple in that bound.

aSaSi ««* Ö *• a class ^ co^lexity Measure c (where

T(S,P) is given by (8)) and let f^ he a sequence of bounding

functions (satisfying (Q)) rh^ya «.
y "g W/. There is an inference machine M which

-ill, for any information sequence #(?) , p € e) ^^ both %

sequence of positive iMMara ri7 i
Live integer ^J and programs M(Sn) suchthat

(a) M(Sn) is a program in c of least c,. complexity
k

whose graph contains S . n

If, furthermore, there is some ^rj f smb tiat Mp) c ^ ^

P has its inning ti.es bounded by soae b, . then for n Urge enougn

(b) kn = k , a constant

(c) MM{Sn))^j,(p)

££221 Let fP.) be an 0ccamfs enumeration for ^ ^^.^ ^ L ^

M will use a sequence fag , ^ being the current ^^ ^ ^^ *

bounding constant. Initially „ =' m* *****
* *lm I * The machine proceeds as

follows to obtain k and M(s)
n v n' '

12

Step 1 For each i , 1 < i < n and k , l<k<n5M computes

(10) 6t(i,k)=max d(x,y,P, ,a K (x,y))
(x,y)6Sn

If 6 (i,k) =1 for l<i,k<n then M sets lL« 1 and goes

to Step 3. Otherwise M goes to Step 2 .

Step 2 M selects k as the first index k such that 6,(i,k) = 0
* n n

for some i < k . M then selects i as the first index such that
— n

6 (i,k) = 0 . M then selects k as the least integer such that
nv ' n' n

6 (i ,k) = 0 and goes to Step 3 .
nv n' n

Step 3 If 6 (i,k) = 0 for some i and k l<i<n,l<k<n

and if i = i for some m < n then M sets o' , = or,, . Other-
n m n+1 n

wise M sets a ,-, = 1 + a„ . n+1 n

Step k M selects M(S) as the best program using the algorithm of

Theorem 1 with the measure C,
bk

n

Let us now show that (a),(b),(c) hold. Condition (a) follows

directly from that fact that Step h uses the algorithm of Theorem 1 .

Consider the set f of pairs (i,k) such that bk bounds the

running time of P. and MK) ^M?) • We will show that if ^

is not empty then (b), (c) hold. Towards this end let (I,!) be

the pair in /f which minimize the maximum of i and k for

(i,k)6^ . (In case of ties we choose the one which comes first in

the lexicographic ordering of pairs).

13

We let yh be tbe least constant such that

dU,y,r4,a* b^(x,y)) =0 , for all (x,y) 6 KP)

and consider two cases

Case 1 Ihe machine M makes at least ah different guesses of i .

In this case for n large we always have 6 (I,K) = 0 . If

i is not i it is because there is an (i,k) pair found first. In

particular we have i < k < max (I,K) so that a must be eventually

constant. By our choice of (I,K) any pair (i,k) of lower max{i,k)

will eventually be rejected because ^(P.) doesn't contain i^P)

or because 6 (i,k) = 1 for all k such that max(i,k} < max{*,K) .

ITius in Case 1, i will eventually be i and k will eventually

be ft .

Case 2 The machine M makes a different guesses of i and
^—— n

a <ak .

In this case we consider the class if of pairs (i,k) with the

following properties

i) ^(Pi)3^(P)

ii) d^y,?.,* bk(xJy) = 0 , for all (x,y)€*(P)

If J^ were empty M would make more than a guesses. It is easy

that if n is large enough we will have i = T and k = 'ic where

Ci,Tc) = min max(i,k)

where ties are again broken by taking the least number in the lexicographic

order. This completes the proof of Theorem 3 .

Ik

One might think that Theorem 3 can be formulated so that M

can actually infer the least integer k such that some program whose

graph contains ^(P) has its running time bounded by bk . We

suspect that this cannot in general be done.

Example Suppose f_, f are recursive functions such that there are

programs P(f,), p(fp) which compute each argument in time b^^ and b,

respectively, and that no program does better for infinitely many

arguments. Let

f (k) , n = 2k-]
tin) =

f2(k) , n = 2k

and consider the sequence of programs P such that

p*' uses P(f,) to compute for n odd, is undefined for

n = 2k , k > i , and computes f(2k) , k < i by a table.

Thus the program length L(P^10 will be unbounded, yet the running

time of P^ will be bounded by b, . If an inference scheme considers

only a bounded number of programs one may be able to infer that f

can be computed in b time for some k > 2 . If, however, the

scheme considers more and more programs, one eventually encounters

the P^1' which would cause the erroneous guess of time bound b1 .

We have not been able to convert examples of this sort into a

proof that no machine can always find the lowest k for which there

is a P. with ir(P) c ir(P,) and T(S , P.) < b (S) . However, we do
j — j n j K n

know that any machine that attemps to always find the lowest possible

k will have to look at arbitrarily many P. for some functions.

This can be forced by taking some function of class k and replacing

15

it on a finite number of arguments with a function of class k+1 .

This suggests the following modification to Theorem 3.

We supply the machine M with an auxiliary function A(£,k)

which maps a size and a bounding index into a size. This tradeoff

function A(jK,k) determines the size of program to be considered in

searching for an improvement to an answer P. of size i and complex-

ity index k . Intuitively, AU,k) says that the user of the inference

machine M prefers a program of class k-1 and size AU,k) to a

program of size i and class k .

There is a "natural" A function derived from the complexity

function, namely

AU,k) = first size m such that

c(£,T (S,P)) > c(m,0) .
k

The construction for Theorem 3 can easily be modified to include

A(jJ,k) . This still does not guarantee the minimum value for k ,

but seems to be a natural model of inference processes.

Remark 3 There has been a considerable amount of work [12] on

complexity classes of functions. To remain consistent with this work,

we would have to restrict the choice of cp(U {T(x,y,P)}) to ones

which give the same complex! y classes as cp = ,!?ax - N(Tb(x,y,P.) .

A good choice would be

T (S,P.) =inax T (x,y,P) + 1 E T (x,y,P) .
b J (x,y)6S b J Tsf (x,y)€S b J

This (max + average) measure gives the s?me classes as max, and also

distinguishes among programs with the same maximum time. Since the ratio

of this measure with the max measure is bounded away from 0 and oo ,

16

Theorem 3 holds for it also. Furthertore, it is also bounded away from

zero, avoiding the degeneracy problem for the usual choices of C(L,T) .

The results derived here for programs have a significantly

different flavor from those developed [7] for grammars. A central

issue in grammatical inference is the presence or absence of negative

information, i.e., strings in a sample marked as not belonging to the

language being learned. This problem does not arise in program inference

for two reasons. With grammars, an answer which generates too many

strings is normally considered wrong, but our constructions allowing

answers whose graph includes that of the hidden function seem quite

natural. This arises from the single-valuedness of functions -

if (x,y) appears in a sample then no (x,y') with y { y' can

appear. When 1(M(S)) 3 ^(P) , M has simply chosen a program which

may be defined for some arguments where P is not. If one attempted

to extend our results to relations, the problems associated with negative

information would reappear.

The results of this paper should be viewed in the context of a

renewed interest in inductive and scientific (hypothetico-deductive)

inference. In addition to the theoretical work on programs and grammars,

there is work on predicate calculus [16] and real chemistry [51.

All of these efforts have applied as well as theoretical components.

Some of our work on program inference is discussed in [8] and [1]

and there is a fairly ambitious effort underway to infer loop programs

from sample traces. Thus far, there has been surprisingly little

carryover from one domain to the other and from theoretical results

to programs, but a common understanding of the issues seems to be

IT

emerging. There are also proposed applications of inference techniques

to pattern recognition [9] and natural language description [1^]

which provide constant reminders of the weakness of existing results.

References

[I] Biermann, A., "On the Inference of Turing Machines from sample
computations," CS24l| Stanford Computer Science Department,
October 1971.

[2] Biermann, A. and J. Feldman, "A Survey of Grammatical Inference,"
in S. Watanabe, (Ed.), Frontiers of Pattern Recognition.

[3] Blum, M., "A Machine-independent Theory of the Complexity of
Recursive Functions," J. ACM Ik, No. E, April 1967, pp.
322-336.

[h] Blum, M., "On the Size of Machines," Information and Control 11,
(1967), pp. 257-265.

[5] Buchanan, B., E. Feigenbaum, and J. Lederberg, " A Heuristic
Programming Study of Theory Formation in Science,"
Proc. 2nd ICJAI, London, 1971.

[6] Feldman, J. A., J. Gips, J. J. Horning and S. Reder, "Grammatical
Inference and Complexity," CS 125, Stanford University,
June 1969.

[7] Feldman, J. A., Some Decidability Results on Grammatical Inference
and Complexity," Information and Control, 1972.

[8] Feldman, J. A., "Automatic Programming," CS255> Stanford University,
February 1972.

f9l Fu, K. S., "On Syntactic pattern Recognition and Stochastic
lanKuacos," TR-EETl-gl, Purdue University, 1971.

[10] Gold, M., "Limiting Kecursion," J. Symb. Logic 50, (1965),
pp. 28-^8.

[II] Gold, M., "Language Identification in the Limit," Information
and Control 10, (1967), pp. ^7-^7^.

[12] Hartmanis, J. and J. Hopcroft, "An Overview of Computational
Complexity," J. ACM 18, 3 (July 1971), PP. W4-475.

[13] Hopcroft, J. E., and J. D. Ullman, Formal Languages and Their
Relation to Automata, Addison-Wesley, Reading, Mass., 1969.

[Ik] Klein, S., et al, "The Autoling System," TR ^3, Computer
Science, University of Wisconsin, September 1968.

[15] Pager, D., "On the Efficiency of Algorithms," J. ACM 17, k
(October 1970), pp. 708-715.

-/T

[161 Plotkin, G. D., "Automatic Methods of Inductive Inference,"
Ph.D. Thesis, Machine Intelligence Dept., University of

Edinburgh, 1971.

[17] Rogers, H., Jr., Recursive Functions and Effective Computability,
McGraw-Hill, New York, VjVJ.

[18] Simon, H., "Experiments vith a Heuristic Compiler," Journal ACM,
October 1963, pp. U82-506.

[19] Meyer, A. R. and D. M. Ritchie, The Complexity of loop profirams,
Proc. ACM 22nd Nat. Conf., pp. 405-9.

-«0-

